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We present a three-dimensional code that solves for plasma equilibria in open-field 
geometries, which allows analysis of most minimum-B mirror systems. Open confine- 
ment with p = p(B) only requires the hydromagnetic equilibrium equation to reduce 
to one elliptic, scalar partial differential equation involving a tensor pressure. The finite 
difference form of the equation is solved by an implicit iterative algorithm similar to the 
AD1 (alternating direction implicit) method. Cylindrical grid coordinates are employed, 
and the mesh spacing is variable to allow representation of far boundary conditions. We 
have time-optimized the program, so the memory requirements are large. It is found 
that, when the threshold for hydromagnetic instability is passed, the hydromagnetic 
equilibrium equation becomes hyperbolic, which leads to an ill-posed problem as 
predicted by Grad. Equilibria are found for an increasing sequence of pressures until the 
instability threshold is reached. The present code utilized planes of inversion symmetry 
common to many minimum-B devices, to allow a reduction in the domain to be studied; 
Ioffe bar devices, Baseball II, 2X-11, and the proposed mirror fusion experiment are 
representable. We present sample results for Baseball II and the Ioffe bar device, in- 
cluding cases near the high beta instability threshold. 

1. INTRODUCTION 

Computation of finite-beta plasma equilibria has up to now been restricted to 
configurations sharing the common feature of effective two-dimensional symmetry. 
We have developed a three-dimensional code that solves for plasma equilibria 
in open-field geometries. 

The class of problems that can be solved by this three-dimensional code includes 
configurations in which the field lines are open and hence in which tensor pressure 
is required, to have equilibria. The hydromagnetic stability analysis, which is 
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134 ANDERSON AND KILLEEN 

difficult for the scalar pressure systems in axially symmetric configurations, is 
comparatively simple here and can be performed by inspection of the equilibrium 
solution. 

The model assumes complete charge neutrality, and we consider time-indepen- 
dent phenomena only. For this case Maxwell’s equations reduce to the pair 

VxB=j (1) 
V.B=O. (2) 

A tensor pressure model of the plasma is chosen for a class of equilibria in which 
p = p(B) alone. Hydromagnetic equilibrium is given by the usual equation 

j x B = V-p. (3) 

In presenting the results we will quote a value for fl. We shall use the convention 
due to Post [l] and define a local /3: 

(4) 

The code has been set up such that it is easy to change the vacuum field of the 
mirror device so that we are able to study contigurations such as Baseball II, 
2X-11, a Ioffe bar machine, or almost any conceivable minimum-B device. The 
results we show are primarily of the Baseball II and Ioffe bar configurations. 
We look at several pressure models and compute the maximum pressure consistent 
with hydromagnetic stability. 

2. HYDROMAGNETIC EQUILIBRIUM EQUATION FOR TENXIR PRESSURE 

Systems with open field lines achieve plasma confinement by the mirror effect. 
Particles entering the velocity space loss cone are lost and there is thus no possibility 
of an isotropic distribution function. The pressure then is a tensor with two 
independent components pL and p ,, , where 

and 
P =P,l+ (PI -PJM 

n =B/jBI; I is the unit tensor. (5) 

2.1. Models for the Pressure Projile 

When considering what variables should be admitted to the arguments of p, 
we must restrict ourselves to models that can satisfy the equilibrium and that 
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correspond to a confined plasma. Profiles of the form p = p(#), where 4 is a flux 
function, are excluded because it requires p to be constant on each flux tube, 
which is compatible with an infinite plasma only. Combinations of # with other 
variables may be admissible. The form of the pressure function depends ultimately 
on the assumed form of the particle distribution function. One possible choice is 
to choose profiles of the form p = p(B). Taylor [2] has shown that the class of 
equilibria given by this choice allows one to considerably simplify the analysis. 
Northrop and Whiteman [3] have shown that the assumption of dependence on B 
only is equivalent to requiring that the guiding center distribution function be 
independent of the longitudinal invariant. Of many possible choices for this 
distribution function, one form given by Taylor [2] is 

t-b, 4 = Wo - 4”-3’2 d/4, E < P& 
(6) 

f(p, 4 = 0, E > ~4, 

where ~1 and E are the magnetic moment and the energy, respectively; these are 
constants of the motion for guiding center equilibria. The function g and the 
index m > 2 are arbitrary. Lower values of m can be shown to lead to instability 
in the zero fi limit. B,, is the value of B on the plasma boundary which is the value 
of B on the last closed contour of B. In the computations it is often convenient 
to take a somewhat smaller value for B, . B, can be thought of as the level to 
which plasma can fill the well. In the same reference, Taylor also introduced the 
pressure functions 

pU = CB(B,, - B)” 
pL = CB2m(B0 - B)‘+l I B < B, and interior to the B = B,, surface 

PII =P*=O, otherwise. (7) 

These pressures can be obtained from any distribution function of the form given 
in Eq. (6). Other distribution functions can also integrate to this form. 

2.2. Equilibrium Equation for a Class of Equilibria 

The equilibrium equations can be reduced to [3,4] 

or 
B x (V x (vB)) = 0 

V x uB = kB 

(8) 

for some scalar k, where we define 

u = PII ---PI _ 1 

B2 . (9) 
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From Eq. (8) we obtain the current 

and 

j = (k/v)B - (l/v) Vv x B 

V . (V x vB) = V . kB = B . Vk = 0. 

(10) 

Since each field line leaves the plasma boundary, the current along that line must 
vanish at the boundary. That is k = 0 at the boundary. The condition B * Vk = 0 
ensures that k = 0 inside the plasma, also. From Eq. (8) we obtain the equation 

We define a potential by 

V x vB = 0. (11) 

vB = V$ (12) 

so then (V * vB) = V2$ = B * Vv. The scalar equation 

vy = $ vc$ * vv (13) 

then represents the equilibrium. 
The decomposition 4 = 4G + 4, is made in which & denotes the contribution 

of the vacuum field which is given and 4, is the unknown potential function giving 
the plasma fields. For a vacuum, then, 

v%$, = 0, Bc = -VA, and v, = -1. (14) 

Using Eq. (14) in Eq. (13) allows one to pose the problem in terms of the plasma 
contribution 4, alone. So the equation to be solved numerically is 

V% = WWv * (V4, - WI, (15) 

which is of elliptic form. 

2.3. Boundary Conditions on the Plasma Fields 

The basic boundary condition is I$, = 0 on a surface far from the plasma. 
That is, at some finite but large distance from the plasma we neglect the fields 
produced by the plasma. Errors of a few percent, in our experience, result from 
these approximate boundary conditions. 

We have thus far made no assumptions about the symmetry of the configuration, 
so Eq. (15) is applicable to any open geometry of interest. For the confinement 
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schemes considered, we shall use cylindrical coordinates r, z, 6. In practice, one 
makes use of other symmetries such as inversion symmetry to reduce the full 
domain. 

2.4. Hastie-Taylor Criteria for Hydromagnetic Stability 

For collisional tensor pressure plasmas, Bernstein [5] gives the double adiabatic 
energy principle; if we are interested in collisionless plasmas, then the energy 
principle of Kruskal and Oberman [6] is the appropriate one to use. It has been 
shown that this latter criterion for stability is always more pessimistic, that is [7], 

SW,, < SW,, 9 (16) 

where DA refers to the double adiabatic model. Taylor had worked out sufficient 
conditions for stability in terms of the double adiabatic energy principle, but it 
clearly does not apply in the collisionless case [2]. Taylor and Hastie [8] later 
obtained necessary and sufficient conditions for the stability of a collisionless 
guiding center plasma, which are then also sufficient conditions for the stability 
of a collisional model. They obtained their result for the class of equilibria discussed 
earlier, where pL = p,(B) and p ,, = p ,,(B). 

The collisionless guiding center model, with p and E constants of the particle 
motion, is used with the energy principle of Kruskal and Oberman. After perform- 
ing the algebra and considering distribution functions of the form 

one arrives at the following inequalities: 

B --pa > 0 and B + pI’ > 0. 08) 

These two conditions are referred to as the necessary and sufficient conditions 
of Taylor and Hastie [8] for hydromagnetic stability. The first of these conditions 
is equivalent to 

v < 0. (19) 

when p,(B) and p,,(B) are given by Eq. (7). 
Physically one can show that this is the requirement that the firehose mode be 

stable. The other requirement, B + pL’ > 0, is the condition in which the mirror 
instability is suppressed. 

Grad [9] has shown that the character of the equilibrium equation changes 
from elliptic to hyperbolic wherever the Hastie-Taylor thresholds are exceeded. 
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3. MIRROR EQUILIBRIUM COMPUTATIONAL METHODS 

We now proceed to solve Eqs. (15) and (12) on a three-dimensional finite- 
difference grid. 

The cylindrical form of Eq. (15) is 

Ia a+ 
r ar i 1 

1 %#I az+ -- y$y +yqjc+aZz 

J av a+ -- [ ( - - 
v ar ar 

B - - 
Tc 1 

+l& a+ 
( r2 a8 a0 Bo,) + $ ($ - kc)], (20) 

where we have suppressed the subscript p, i.e., +B -+ qS. Most proposed and 
existing mirror confinement devices possess planes of inversion symmetry. For 
the Ioffe bar devices [2] there are L of these planes located at 

e = (I - 1)(77/L) I = l,..., L, (21) 

where L gives the number of Ioffe bar pairs. For the devices Baseball II [lo] and 
2X-11 [ll], two mutually perpendicular inversion planes exist and hence have the 
same symmetry as an L = 2 Ioffe bar device, which is shown in Fig. 1. These 
symmetries allow one to study a reduced domain. In the r and z coordinates, the 
domain is not reduced; in 8, however, the full domain (0,2n) is reduced to (0, n/L). 

loffe bars 
Reduced domain \ ,,,,/” = n/4 

\e = -a/4 

FIG. 1. End view of an L = 2 Ioffe bar device. Note that the domain may include the external 
coils. Inversion symmetry through the B = lr/4 and the 0 = --n/4 planes allows reduction of the 
domain as shown. The same symmetries apply to Baseball II and the 2X-n experiments. 
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For Baseball II, then, the domain is (0,7r/2), which allows a fourhold reduction 
in the number of grid points required for the computation. An assumption implicit 
in what we have said here is the reasonable requirement that the plasma fields 
have the same symmetries as the vacuum fields. 

To summarize, the domain for Baseball II is given by 

-zmax < z < zmax (22) 

0 < 8 < 712. 

Then, coupling these symmetry conditions with the far-field boundary condition 
that the plasma fields be negligible at the outer boundaries, we arrive at the 
following boundary conditions: 

9% = rm,,) = 0 = (h$/&)(r = 0), 

(a+/ae)(e = ?T/2) = 0 = (a&a@@ = O), (23) 
and 

$(z = zmax) = 0 = cj(z = -z,a,). 

Equation (20), together with these boundary conditions, forms a well-posed 
computational problem; Eq. (12) represents an algebraic equation that allows us 
to evaluate v as a function of 4. It also allows us to compute B. 

When Eq. (20) is solved in two dimensions, the alternating direction implicit 
(ADI) method is used to obtain the solution. For three dimensions, the AD1 
scheme can produce numerical instabilities, and a generalization of it that is 
better behaved is used [12]. Instead, we use an algorithm developed by Douglas 
and Gunn [13] to solve Eq. (20). 

Before the DG algorithm can be used, we convert Eq. (20) to a parabolic 
equation in which the time variable plays the role of iteration parameter. So, 
instead of solving Eq. (20), we solve the equation 

vy - (ilv) vu. (v+ - B,) = a4/at, (24) 

and look for the steady state solutions which then satisfy Eq. (20) also. 
For any orthogonal coordinate system the finite difference form of the equi- 

librium equations can be reduced to one scalar equation of the form 

A4i-1 + %+I + C+j-1 + D$j+s + EL + F&+1 + G+ = g* (25) 

Here we have suppressed all the nonvaried subscripts, i.e., A = A<jk, 
di-1 = +i--l.j,k 3 etc. The i, j, and k indices give the spatial location in terms of 
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the orthogonal coordinates x1 , xa , and x3, so #Q, = +[(x~)~ , (x2), , (x3)J. The 
coefficient G can be decomposed into the form G = G, + G, + G:, , where each 
successive term involves the i, j, k operators, respectively. We then &fine the 

generalized difference operators d,* , dZZ , and dZo by 

and 
Az34 = EL, + FEW, + G,+. (26) 

The difference equation corresponding to Eq. (20) is 

(AxI + Act2 + 4J + = g. (27) 

Taking the finite difference form of Eq. (24), we get the difference equations 

(4xl i- 4x+ + AzJ 4 = g + p(P+l - 4% (28) 

where p = l/At, and is an iteration parameter. We must have p > 0. The super- 
script 12 or IZ + 1 is intentionally deleted from the LHS, and it is the DG algorithm 
that specifies the exact mixture of rj n+l and 4” to be used. The DG method is 
a three-step process. The first equation treats the AxI operator implicitly, and the 
other two equations treat AZ2 and AZ3 implicitly. The equations are 

and 

@LJ@+l + 49 + @L2(+n+2 + $9 + A& = g + P(+~+~ - $9, 

(29b) 

$41(P+1 + 49 + &42(P+2 + 9”) + $43(P+3 + $9 = g + PCP+~ - qW. 
(29~) 

A more useful set is obtained by subtracting Eq. (29b) from Eq. (29a), and 
Eq. (29~) from Eq. (29b), so the set is 

and 

&.I(~+1 + 4”) + A,# + ASP = g + p(P+l - 4% (304 

&&,++2 - @) = p(,#,-+2 - @+I), (3Ob) 

+&J@+3 - j,“) = p(++3 - +“+2). (3Oc) 
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Given $“, we solve Eq. (30a) for 4 n+l and use it sequentially to obtain $n+2 
and p+3 from Eqs. (30b) and (3Oc). We then set $n+3 -+ p and repeat until the 
iterative process converges. We check convergence by computing the residual 
error 1 pf3 - 4” /. 

Each of the equations is now a one-dimensional two-point boundary value 
problem in the x1 , x2 , and xs coordinate, respectively, and each is solved by the 
double-sweep algorithm. For example, we give the algorithm for Eq. (30a). Since 
9 %+l is the unknown in the equation, we write it as 

A.#+1 - 2p#P+1 = 2g - o,,p - 2(o,2 + A@) p - 2&n = sp, (31) 

where Scjn is shorthand for the right side, which is a known function. We now 
expand the A, to obtain 

A#?; + B&‘;; + G,#‘+l - 2p$;+’ = $bn. 

Let 

q4:-:’ = ei-,+;+l +&l 

and substitute this into Eq. (32). We obtain 

(32) 

(33) 

$‘+l = (AeiTl Jil - 2p) 
Sp - A&, 

“” + (AeiPl + G, - 2p) ’ (34) 

which is of the same form as Eq. (33), so we get 

ei = -B/(Aeiml + G, - 2p) (35) 

h = (SP - A&>/(Aei-l + G - 2~). (36) 

Equations (33), (35), and (36) give us the machinery to solve Eq. (31). The boundary 
condition at i = 1 is used to give e, and fi . By sweeping to the right, using Eqs. (35) 
and (36), we generate the entire sequence of e’s and f ‘s. The upper boundary 
condition is used to determine +1,, . Then Eq. (33) is used in a sweep to the left 
to obtain the solution 9 n+l at each grid point. This equation is solved for each i 
line specified by a j, k pair of indices, except for those j, k pairs lying on the bound- 
ary surface. Equations (30b) and (30~) are solved in a similar manner. After each 
full iteration cycle (generating a f$ n+3 from a I#P), we must also change the coeffi- 
cients A, B, C, D, E, and F, which are, in general, functions of I$. The function g 
must also be recomputed. These dependences on 4 make the equations nonlinear. 

If the equations were linear, then the DG algorithm is unconditionally stable 
in the numerical sense. Introduction of the nonlinearities may lead to cases in 
which stable convergence requires the convergence constant p to exceed some 
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critical value. In practice, where the nonlinearities are not too pathological, we 
usually obtain stable convergence to a solution. 

For reference we give the values of the various difference coefficients. The 
indices i, j, and k refer to the coordinates, r, 0, and z, respectively. The differencing 
was done such that the difference equations are still valid on a nonuniform mesh. 
A restriction on the mesh is that the grid cells remain rectangular in the I, 8, z 
space. From Eq. (20) we get the following coefficients for Eq. (25): 

rr I i- ri) hk = (Tit1 -!,I,,(ri - riwl) Yi + i; aij, (?+$+I A r-i-1) ’ 

Bm = (ri+l -‘:;$y$ li) ri - (+-g),, (ri+l : riel) ’ 

Gk = + (ej+l - e&;)(ej - 8,-l) + 
1 

2 1 
Dirk = 7 ~e,+~ - ei-l)(ei+l - e,) - 

Eijk = 2 

czk+l - zk-l)(zk - zk-l) 

i51c (e5+l - e5-l) ’ 

kk ii&k (e5+l ’ e5-1) ’ 
8V 

-1 
1 

az i5k @k+l - zk-l) ’ 

3V 

-1 

1 
az ijk czk+l - zk--l) ’ 

Fijk = 2 1 
czk+l - zk--l)(zk+l - Zk) i- V 

G,ji, = 
-(ri + ri+J (ri-l + rJ 

ri(ri+l - ri-.-l)(ri+l - r0 - ri(ri+l - ri-d(ri - ri-d ’ 

G2+3k = 2 IY (e5+l - e5-:j(e5+, - ej) + (e5+l - e5Jj(8, - e,-3 1 9 

G3ijk = -’ [ (zk+l - zk-:)(zk+l - zk) + (Zkfl zk-ll)(zk - zk--1) I’ 

and 

$ B,, + f $ BBC + g B,,)] . 
ijk 

(37) 

4. COMPUTED EQUILIBRIA FOR MIRROR SYSTEMS 

4.1. Ioffe Bar Equilibria 

The Ioffe bar model allows us to study a variety of magnetic wells; both the 
longitudinal mirror ratio and the radial profile of B may be varied independently. 
Understanding the effect of these parameters on the high beta equilibria may be 
useful in choosing designs for actual coil geometries. For example, the fields of 
Baseball II are more realistic but have the mirror ratio fixed at 2, and the radial 



FIG. 2. Mod-B contours for the Ioffe bar vacuum field in the 0 = ~14 plane. At 0 = --8/d, 
the results are an inversion of these through z = 0. At B = 0, the results are symmetric about 
2 = 0. 

0.6 - 

0.4 - 

I 

0.2 J 
I 

t-4 o- 

-0.6 - 

FIG. 3. Ioffe device equilibrium result for m = 3, C = 0.1, and B,, = 2.2. The innermost 
solid contour is the minimum-B value of the vacuum field. The dotted contours show the deeper 
parts of the magnetic well carved out by the plasma. /I = 0.25 at the center. 
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0.6 

0.4 1-54 

0.2 -- 

I .04 

N 0 -- 

-0.2 - 

-0.4 - 

-0.6 - 

-0.8 - 

-1.0 

FIG. 4. Higher beta result for Ioffe device equilibrium for m = 3, C = 0.2, and B,, = 2.2. 
Note the wiggles in the B contours in the region of large field gradients. Here ,!I = 0.42 at the 
center and & = 0.43 gives the critical value corresponding to onset of the mirror instability. 

c = 0.2 

~ 

c=o., 

0.4 0.1 0.2 0.3 0.4 0.5 0.6 

FIG. 5. Longitudinal and radial pressure profiles for the Ioffe device equilibria previously 
shown in Figs. 3 and 4. We note that pI has a very flat profile in the center region and has its 
maximum near the surface of the plasma. 
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profile is also fixed. So in spite of the somewhat ideal representation of the Ioffe 
bar fields, they do allow us some freedom in experimenting with the shape of the 
magnetic wells. 

We present some sample graphical output of results in Figs. 2 through 5. The 
first figure shows the B contours for the vacuum field. Then the distorted equi- 
librium fields corresponding to a moderate and high beta are given. When the 
parameter C cas increased to 0.25, the solution diverged wildly. From the Hastie- 
Taylor criteria, Eq. (18), we can show that the mirror instability threshold is 
given by the critical value C, = 0.28. The critical beta corresponding to this is 
fit = 0.43. We also see that the gradients of B and pI are large in the region of 
the plasma surface; we can check that it is in this region that the mirror instability 
first occurs. We can also observe small ripples in Fig. 4; the wavelength of these 
ripples seems to be about 2 to 4 grid spacings long. 

4.2. Baseball II Experiment 
A tape of the Baseball II vacuum field has been prepared from the solution of 

the Biot-Savart law for the coil configuration. The field is fixed with respect to 

I I I I I 

-0.2 0 0.2 0.4 0.6 0.8 
R (!3=0) 

FIG. 6. Baseball II vacuum field B contours in the 0 = 0 plane. The unusual pattern in the 
upper right corner is due to the presence of the Baseball coils located there. The picture is inverted 
for the 0 = a/2 plane and it is symmetric about z = 0 for the 0 = n/4 plane. Here the mirror 
ratio is 2 and minimum-B = 1.0. 



J-ldd 0 0.2 0.4 0.6 0.8 1.0 

R (e=O) 

FIG. 7. 
center. 

Baseball II equilibrium field for C = 0.20, m = 3, and & = 1.8. ,g = 0.41 at the 

0.2 0.4 0.6 0.8 1.0 

R (e-0) 

FIG. 8. Baseball 11 equilibrium field for C = 0.33, m = 3, and B,, = 1.8. /3 = 0.54 at the 
center. The ripples are apparent now as we approach the mirror instability threshold. 



FIG. 9. Baseball II equilibrium field near the mirror instability threshold with C = 0.36, 
m = 3, and B. = 1.8. = 0.55 at the center. At the threshold the criteria of Hastie and Taylor 
give C, = 0.41 and A = 0.61. The wiggles are very prominent here. 

0.8 I 1 I / 

0.6-- -i 

1.0 
I i I 

0.8- 

d 

0.4 - c = 0.20 

= 
0.2 - 

c 0.10 

0 0.1 0.2 0.3 0.4 0.5 

R 

FIG. 10. Radial pressure pro&s for Baseball II equilibria. pressure values corresponding 
to the results shown in Figs. 7 and 9 are plotted. The pL profile now has a pronounced maximum 
near the plasma surface. /l still takes its maximum value at the center however. 



N 

-0.2 0 0.2 0.4 0.6 0.8 1 

R(e=O) 

0 

FIG. 11. Baseball II equilibrium field for C = 0.2, m = 4, and B,, = 1.8. Compare this 
figure with Fig. 7 to see the m dependence. This equilibrium is near the mirror instability threshold. 
BE = 0.52 and /3 = 0.50 at the center. C, = 0.25. Again the ripples appear. 

0.6 / I I 

0.6 - 

CL1 0.4- 

0 0.1 0.2 0.3 0.4 

FIG. 12. Radial pressure profiles for Fig. 11. 
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mirror ratio and radial profile; it can be varied only by a scaling factor, which is 
of no interest here because the computation is in dimensionless variables. For 
convenience we have picked the dimensionless variables such that the minimum-B 
value is just 1. Since the mirror ratio is 2, the value of B on the last closed surface 
of constant B is 2. These values correspond to 20 kg and 40 kg, respectively, in the 
actual experiment. 

Figures 6-9 give the equilibrium fields for a sequence of runs in which the 
pressure was increased until a value of the parameter C corresponded to a 
blowing-up solution. For this series of runs, all with the same values form and B,, , 
C = 0.40 caused the solution to diverge. The theory predicts ,8c = 0.61 and 
C, = 0.41. Figure 10 gives the pressures. 

Another set of runs was made for a different m value. Here m = 4, whereas 
it was 3 for the first set of runs. The results are shown in Figs. 11 and 12. The 
value C = 0.25 was sufficient to destroy the solution. The Hastie-Taylor criteria 
for the mirror instability give C, = 0.27 and /3, = 0.52. The steep gradients and 
ripples are again prominent for the high beta limit. 

5. DISCUSSION 

All of the results for high beta show pI having its maximum near the plasma 
surface rather than at the location of the minimum-B. One would not guess this 
result offhand, but it is clear from the form of Eq. (7) that the maximum occurs 
either at the minimum of B or at B = 2B,,/(l + m), according to which B is 
larger. The !irst of these is usually associated with low beta, whereas the second 
one obtains for the high beta equilibria. 

It has been suggested by Grad [9] that unstable equilibria may not exist for 
open-confinement configurations. The apparent inability of our code to find 
unstable quilibria corresponds to this notion. The ripples are thought to be related 
to the loss of equilibrium at the mirror instability threshold. 

The argument showing that unstable equilibria do not exist can be given if one 
examines the form of Eq. (20). We would guess from a first glance that this equa- 
tion is of the elliptic form. The function v depends on V+, so there will be some 
second-order terms on the right side of Eq. (20) also. For sufficiently high beta, 
these terms become important and cause the equation to become hyperbolic 
in the region of the mirror instability. Keeping the same boundary conditions 
(essentially Dirichlet) leads to an ill-posed problem possessing no solution. 

Other experimental configurations are easily studied simply by making a tape 
of the vacuum field. It is clear from the form of Eq. (20) that the vacuum field is 
only needed in the region of the plasma. The full domain is larger than the domain 
of the vacuum field, and it is on this that we solve the equilibrium equation. In 
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Fig. 13 we give a sketch of the relationships of the various domains and regions. 
Singularities in the expressions for the vacuum field do not cause a problem 
because the vacuum field is not computed in the coil region. 

r field” boundaries 

LPlosmo region 

FIG. 13. This sketch shows the relationship of the computational domain to the domain 
of the vacuum field and to the plasma region. For the problems solved here the computational 
domain was not much larger than the vacuum field domain. Coils may be inside the computational 
domain so long as the plasma equilibrium surface does not touch them. 
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